
IJSRSET151371 | Received: 19 June 2015 | Accepted: 23 June 2015 | May-June 2015 [(1)3: 324-328]

© 2015 IJSRSET | Volume 1 | Issue 3 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099
Themed Section: Engineering and Technology

324

Hybrid Algorithm for Backward Hashing and Automation Tracking For Virus

Scanning
Panchal Mital K, Bakul Panchal

Department of Information Technology, L. D. College Of Engineering, Ahmedabad, Gujarat, India

ABSTRACT

Virus scanning involves computationally intensive string matching against a large number of signatures of different

characteristics. Matching a variety of signatures challenges the selection of matching algorithms. We propose a

hybrid approach that partitions the signatures into long and short ones in the open-source ClamAV for virus

scanning. By improving and enhancing the Wu-Manber algorithm, the new algorithm called as the Backward

Hashing algorithm which is dependable for only long patterns to extend the average skip distance. There is one

more algorithm which takes care of short patterns is Aho-Corasick algorithm. It scans only short patterns to reduce

the automation sizes. Algorithm we have discussed first uses the bad-block heuristic to develop long shift distance

and thus decreasing the verification rate of recurrence. In that way it is much faster than the original WM

implementation in ClamAV open source antivirus software. Algorithm we have stated later increases the AC

performance by around 50 percent due to better cache locality. We also rank the factors to indicate their importance

for the string matching performance.

Keywords: ClamAv, AC, Backward Hashing

I. INTRODUCTION

Using two or more algorithms as base and adding new

viable features to it, we have created the proposed

hybrid algorithm. New proposed algorithm come into

with some properties of its base paper algorithms and

performs operations better. Proposed new (hybrid)

algorithms are proposed for both exact string matching

and approximate string matching. Before our proposed

algorithm, many hybrid algorithms are based on Boyer

Moore algorithm, Kunth-Moris-pratt algorithms,

Horspool algorithm, Wu-Manber algorithms and many

more are also the alternatives of Boyer-Moore and KMP

algorithms. Hybrids Algorithms are also designed for

applications such as invasion detection, biological

sequence analysis, imprecise string, virus scanning. The

core purpose behind the pattern matching/string

matching algorithms is to lessen number of comparisons

of characters of text and to reduce the time required

mainly for worst case and average case. Number of

hybrid algorithms has been proposed to improve the said

problem and improvise it.

We have divided this paper into two parts which are as

follows; section 2 includes the working principles of fast

hybrid string matching algorithms along with graphical

representation of performance comparison with their

parent algorithms and finally conclude with section 3.

II. METHODS AND MATERIAL
The data mining process is to be consisted of five steps.

 Problem statement and formulation Hypothesis

 Data gathering

 Data preprocessing

 Model estimation

 Model analysis

Purpose behind applying the hybrid approach in

malware detection

 Speedy process for identification of malicious

signatures and malware signatures.

 Implementation of hybrid approach thru data

mining on large volume of data

 Protect user data

 To provide protection to system resources

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

325

 Provide application isolation

Figure 1: Data Mining Process

Features

 Strong security at the OS level through the

Linux kernel

 Compulsory application storage state for all

applications

 Secure inter-process communication

 Application signing

 Access with user granted permission at

application level

Algorithm adopted for faster searching of patterns from

database

Core idea behind the Boyer-Moore string-matching

algorithm [BM77] is as follows. Let us assume that the

pattern is of length is m. We start by matching it to the

last character of the pattern against m, the m‘th character

of the text. If there is a mismatch between characters

(and in most texts the probability of finding a mismatch

is much greater than the probability of a match found),

then we determine the rightmost occurrence of tm in the

pattern and shift accordingly.

A. Theoretical Approach

When we come to the conclusion that the definitions

checked is the malicious definition, the next step should

be to add it to the database. Those definitions from

database will be taken care of not finding the same and

will match it in reference with the database. So the

process becomes easy to detect them by just matching it

with the database.

In this paper, they present a different approach that also

uses the ideas of Boyer and Moore. The algorithm is

quite simple Typical searches in this algorithm is

focused rather than its worst case behaviour. To make

the algorithm more faster than the existing one, we had

to take some crucial engineering decisions take it in

practice.

An earlier version of this algorithm was part of the

second version of a grep [WM92a, WM92b], although

the algorithm has not been discussed in [WM92b] and

only briefly in [WM92a]. The current version is used in

glimpse [MW94]. The design of the algorithm

concentrates on typical searches rather than on worst-

case behavior. So we decided to follow a new way to

find the matching patterns from the database and the

exact matching string from database if possible.

B. Proposed Algorithm

WM (Wu-Manber) multiple patterns matching algorithm

adopts the idea of the hash technology and high

competence categorizing ratio, which has the advantage

of easy processing, logic clarity and operating

efficiency. However, the existing WM algorithm-based

methods for a achieving pattern matching for monitoring

content security are all aim of English language texts

C. Overview of WM Algorithm

WM multi pattern matching algorithm applies hash

method by pre-processing of model train set, creating

three tables, SHIFT, HASH, and PREFIX. SHIFT is

used to decide the shifting distance when mismatch

characters or numbers found while matching it. HASH

table and PREFIX table are used to choose which

specific pattern needs to be matched when the SHIFT

Table has a successful match. SHIFT table: Considering

the size of the character block B, rather than simply a

character, block transfer characters are used. In general

the value of is assumed as 2 or 3, SHIFT build an index

for all the possible characters the length of which is B.

So the size of SHIFT table/block is the possible

permutations of characters in B. using the value of

SHIFT block the moving distance of a string of some

certain B-characters is decided in the text, they will be

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

326

the distance between the the characters at the right

position of the certain B-characters and the tail of all

patterns. Suppose X is B-length n character block of the

current calculation and its hash value is i, we can think

of two cases for this step: 1. X does not appear in any of

the string pattern, string matching algorithm of the

current text moves distance m-B +1 characters position,

so we store m-B +1 in SHIFT [i].

Step 2. X string appears in some modes, in this case, the

algorithm matches the rightmost position X that appears

in the pattern string. Assuming X in P [j] appears in the

position q, the position of X in the other modes at the

same X position of the string is not larger than q. Thus,

we should store m-q in SHIFT [i]. This is expressed by

the formula:

Step 3. Finally, we will get SHIFT table. SHIFT table

having new values displays the utmost safe distance of a

long string of B when we are able to transfer the text.

After ensuring the point pos and obtain the hash value i

of the block B, when the SHIFT [i] > 0, pos = pos +

SHIFT

D. Modified WM

Pattern matching algorithm is one of the Core algorithms

in the recognition of the outside invasion engine for

invasion prevention system. Efficiency of the intrusion

avoidance system is determined by pattern matching

algorithm. We have displayed the flow of the algorithm

in the following Flow Chart.

Algorithm:

MWM has three stages, the preprocessing and the

pattern search and storage.

(1) Before the MWM algorithm can be used, its hash

and shift tables must be generated using a finite set

of patterns provided beforehand. This is a one-time

step that needs to be redone only when there are new

sets of patterns. It should be pointed out here that the

original WM algorithm adds a prefix table used to

differentiate between patterns when their suffixes

are the same but their prefixes are different. The first

step in generating the tables is to find the minimum

pattern length m from all signatures. This length m

represents the number of characters that will be

taken from the first letters of all signatures to form

the shift table.

Figure 2: Flow Chart of Proposed Algorithm

(2) Divide Pattern into 2-2‘s blocks. Determine the

max-size of prefix string as 3. Create HASH table

―HASH‖ for each pattern set. Establish SHIFT table

for pattern search where MWM can search different

pattern sets concurrently. For every pattern sets, the

search process is different.

(3) The shift table is built based on two variables: The

first, B, is usually predetermined to a value of 2 or 3,

albeit there are some other suggested methods for

obtaining its value in accordance to the minimum

length of the patterns and the number of rules

provided. shift keys are assigned a shift value

according to their location q in the pattern using the

equation shift[key] = m – q.

(4) During the scanning process, a sliding window of

size B scans through the searched string each time

obtaining a sub-string of that size and getting its

shift value from the shift table and shifting

accordingly. Nonetheless, if the sub-string key does

not exist in the shift table, a maximum safe

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

327

skip/shift of length (m – B + 1) is used. On the other

hand, a shift value equal to zero requires access to

the hash table and the traversal/search of all patterns

that are linked to the key until a match is found or

the list ends with no match. This iterative process is

repeated until the whole string is completed.

(5) Storage of last searched data will be stored into

another hash table for future reference and that data

will be searched first next time when the new strings

to be searched are entered.

Advantages Proposed Algorithm Over Original WM:

1. To better the quality of the Boyer-Moore like

Shift table, for each original pattern a pattern

representative (hard to find substring with fixed

length) is selected.

2. To increase the possibilities of shifting text

sliding window, a second Boyer-Moore Shift

table is computed.

3. To design a balanced Hash table for improving

the scanning speed of possible matching patterns,

a simple hash method with some random data

property is added.

The advantages of changed algorithm over the previous

explained algorithms is that the text scanning speed of

the changed Wu-Manber algorithm is faster because

with the use of second shift table exact string

comparison is avoided most of the time.

Table-1 A Comparative Analysis of Basic Wu-Manber & Proposed Algorithm

III. RESULTS AND DISCUSSION
Under the same test environment as described earlier

(windows os, processor-core i3 and 4GB RAM), we

compare the performance of WM and MWM.

Experiments are run on a set of virus signatures

collected from different sites. The number of intrusions

and the distribution of the intrusions across the traces

vary from trace to trace. The set of traces are carefully

selected to test the best and worst case performance of

the algorithms. Table 1 lists the 5 traces used in the

evaluation along with related statistics. The ugly traces

―1‖ and ―12‖ are chosen to test the worst case

performance. They suffer from pathological

performance due to their large sizes, the high feasibility

of intrusion signatures in them, and the small skips

which slow down the traversing window.

The bad traces ―58‖ and ―51‖ lie in the middle range

with regards to the number of intrusion signatures and

pathological performance. Finally, the good traces ―bm‖,

―wm‖ and ―mwm‖ are normal signatures that have not

so high feasibility of intrusion signatures in them.

Table-2: Pattern Trace Analysis

Type of

Trace

Serial

Detections

Length(char) Size Instr-

uctions

(%)

Bad Trace

20 458552 65623211 25.03MB 0.25

33 845220 61542202 24.44MB 1.25

Ugly Trace

1 1244788 545114111 20.12MB 12.02

22 54785222 571245336 22.38MB 7.19

Good Trace

BM 250 1052220 0.32MB 0.25

WM 2145 7542001 4.22MB 0.21

MWM 18599 3254479 1.25MB 1.45

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)

328

The length of patterns is ―6‖ characters all the time.

Observe the effect on search time as the number of

patterns increasing.

Figure 3. Comparison of String Patterns in Percentages

All three algorithms were thoroughly tested and found to

provide excellent performance improvements having the

execution times of a serial approach when using four

threads. These performance improvements translate to

swifter detections at better performance for pattern

searching from a database.

No of patterns

Figure 4. Comparision To Search A Pattern

IV. CONCLUSION

We purposed to find the fastest and efficient way to find

a malware signature entered by user from the volume of

malware signatures we have in database. The adopted

research paper is suggesting wu-manber and Boyer-

Moore algorithm for string matching. This paper

proposed a method for backward hashing in a

hybrid approach where we have proposed to find

malicious signatures from a computer using data mining

in an effective way. Because this approach is a

mixture of multiple theories suggested by many of

the programmer before, we will implement it to

generate satisfactory results. After that the formal

description of the program to obtain malicious

signatures can be said appropriate for the purpose. We

have adopted behaviour based detection method [BJL08].

V. REFERENCES

[1] [BJL08] Martin Boldt, Andreas Jacobsson, Niklas Lavesson,

and Paul Davidsson. ―Automate Spyware Detection Using

End User License Agreements.‖ isa, 0:445–452, 2008.

[2] [DM01] Data Mining: Concepts and Techniques. By : Jiawei

Han and Micheline Kamber

[3] [ACK04a] Tony Abou-Assaleh, Nick Cercone, Vlado Keselj,

and Ray Sweidan. ―Detection of new malicious code using n-

grams signatures.‖ In Proceedings of Second Annual Con-

ference on Privacy, Security and Trust, pp. 193–196, 2004.

[4] Computer Software and Applications Conference - Workshops

and Fast Abstracts -(COMPSAC‘04) - Volume 02, pp. 41–42,

2004.

[5] [Mal14]https://www.cert.gov.uk/wp-

content/uploads/2014/08/An-introduction-to-malware.pdf

[6] [SD01] ―Static Detection of Malicious Code in Executable

Programs.‖ Symposium on Re-quirements Engineering for

Information Security (SREIS‘01), 2001.

[7] [Bon93] Vesselin Bontchev. ―Analysis and maintenance of a

clean virus library.‖ In Proceedings of the 3rd Internation Virus

Bulletin Conference, pp. 77–89, 1993.

[8] [Ba89] Baeza-Yates R. A., ‗‗Improved string searching,‘‘

Software — Practice and Experience 19 (1989), pp. 257 271.

[9] [BM77] Boyer R. S., and J. S. Moore, ‗‗A fast string searching

algorithm,‘‘ Communications of the ACM 20 (October 1977),

pp. 762 772.

[10] [Kan02] Mehmed Kantardzic. Data Mining: Concepts, Models,

Methods, and Algorithms.Wiley-IEEE Press, 2002.

[11] [WM92a] Wu S., and U. Manber, ‗‗Agrep — A Fast

Approximate Pattern-Matching Tool,‘‘ Usenix Winter 1992

Technical Conference, San Francisco (January 1992), pp. 153

162.

[12] [WM92b] Wu S., and U. Manber, ‗‗Fast Text Searching

Allowing Errors,‘‘ Communications of the ACM 35 (October

1992), pp. 83 91.

[13] [WM]http://wenku.baidu.com/view/096e6712a21614791711285

5.html

[14] [TA01] Danezis, George. "Traffic Analysis of the HTTP

Protocol over TLS." Unpublished draft (2010).

[15] [TL01] Dierks, Tim. "The transport layer security (TLS)

protocol version 1.2." (2008).

[16] [15] Dierks, Tim. "The transport layer security (TLS) protocol

version 1.2." (2008).

Chart Title

pattern1

pattern2

pattern3

pattern4

pattern5

pattern6

T
im

e
ta

k
en

in

 s
ec

o
n

d
s

